
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ANNEALING FLOW GENERATIVE MODELS TOWARDS
SAMPLING HIGH-DIMENSIONAL AND MULTI-MODAL
DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sampling from high-dimensional, multi-modal distributions remains a fundamen-
tal challenge across domains such as statistical Bayesian inference and physics-
based machine learning. In this paper, we propose Annealing Flow (AF), a contin-
uous normalizing flow-based approach designed to sample from high-dimensional
and multi-modal distributions. The key idea is to learn a continuous normaliz-
ing flow-based transport map, guided by annealing, to transition samples from an
easy-to-sample distribution to the target distribution, facilitating effective explo-
ration of modes in high-dimensional spaces. Unlike many existing methods, AF
training does not rely on samples from the target distribution. AF ensures effective
and balanced mode exploration, achieves linear complexity in sample size and di-
mensions, and circumvents inefficient mixing times. We demonstrate the superior
performance of AF compared to state-of-the-art methods through extensive exper-
iments on various challenging distributions and real-world datasets, particularly
in high-dimensional and multi-modal settings. We also highlight AF’s potential
for sampling the least favorable distributions.

1 INTRODUCTION

Sampling from high-dimensional and multi-modal distributions is crucial for various fields, includ-
ing physics-based machine learning like molecular dynamics (Miao et al., 2015; Salo-Ahen et al.,
2020), quantum physics (Carlson et al., 2015; Lynn et al., 2019), and lattice field theory (Jay & Neil,
2021; Lozanovski et al., 2020). With modern datasets, it also plays a key role in Bayesian areas,
including Bayesian modeling (Balandat et al., 2020; Kandasamy et al., 2018; Stephan et al., 2017)
with applications in areas like computational biology (Overstall et al., 2020; Stanton et al., 2022),
and Bayesian Neural Network sampling (Cobb & Jalaian, 2021; Izmailov et al., 2021).

MCMC and Neural Network Variants: Numerous MCMC methods have been developed over the
past 50 years, including Metropolis-Hastings (MH) and its variants (Choi, 2020; Cornish et al., 2019;
Griffin & Walker, 2013; Haario et al., 2001), Hamiltonian Monte Carlo (HMC) schemes (Bou-Rabee
& Sanz-Serna, 2017; Girolami & Calderhead, 2011; Hoffman et al., 2021; Li et al., 2015; Shahbaba
et al., 2014). HMC variants are still considered state-of-the-art methods. However, they require
exponentially many steps in the dimension for mixing, even with just two modes (Hackett et al.,
2021). More recently, Neural network (NN)-based sampling algorithms (Bonati et al., 2019; Egorov
et al., 2024; Gu & Sun, 2020; Hackett et al., 2021; Li et al., 2021; Wolniewicz et al., 2024) have
been developed to leverage NN expressiveness for improving MCMC, but they still inherit some
limitations like slow mixing and imbalanced mode exploration, particularly in high-dimensional
spaces.

Annealing Variants: Annealing methods (Gelfand et al., 1990; Neal, 2001; Sorkin, 1991;
Van Groenigen & Stein, 1998) are widely used to develop MCMC techniques like Parallel Tem-
pering (PT) and its variants (Chandra et al., 2019; Earl & Deem, 2005; Syed et al., 2022). In
annealing, sampling gradually shifts from an easy distribution to the target by lowering tempera-
ture. Annealed Importance Sampling (Neal, 2001) and its variants(Chehab et al., 2024; Karagian-
nis & Andrieu, 2013; Zhang et al., 2021) are developed for estimating normalizing constants with
low variance using MCMC samples from intermediate distributions. Recent Normalizing Flow and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

score-based annealing methods (Arbel et al., 2021; Doucet et al., 2022) optimize intermediate densi-
ties for lower-variance estimates, but still rely on MCMC for sampling. However, MCMC struggles
with slow mixing, local mode trapping, mode imbalance, and correlated samples issues. These lim-
itations are particularly pronounced in high-dimensional, multi-modal settings (Hackett et al., 2021;
Van Ravenzwaaij et al., 2018).

Particle Optimization Methods: Recently, particle-based optimization methods have emerged for
sampling, including Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016), and stochastic
approaches such as (Dai et al., 2016; Detommaso et al., 2018; Li et al., 2023; Liu, 2017; Maddison
et al., 2018; Nitanda & Suzuki, 2017; Pulido & van Leeuwen, 2019). However, many of these
methods rely on kernel computations, which scale polynomially with sample size, and are sensitive
to hyperparameters.

Normalizing Flows: Recently, Normalizing Flows (NFs) (Rezende & Mohamed, 2015) and Stochas-
tic NFs (Hagemann et al., 2022; Wu et al., 2020) have been explored for sampling. However, discrete
NFs often suffer from mode collapse, prompting works (Albergo & Vanden-Eijnden, 2023; Arbel
et al., 2021; Brofos et al., 2022; Cabezas et al., 2024; Gabrié et al., 2021; 2022; Matthews et al.,
2022) to address this with MCMC corrections, which depend on the quality of MCMC samples and
thus may struggle in high-dimensional settings. Several Continuous Normalizing Flows (CNFs) al-
gorithms (Hertrich & Gruhlke, 2024; Tian et al., 2024) are developed to address mode collapse, but
still rely on Monte Carlo procedures to correct bias, which are often sensitive to high-dimensional
densities. Besides, these methods may often fail with widely-separated modes, leaving some unex-
plored even after extensive training.

Challenges persist with multi-modal distributions in high-dimensional spaces. This paper introduces
Annealing Flow (AF), a novel sampling scheme that learns a continuous normalizing flow map from
an easy-to-sample distribution π0(x) to the target q(x), guided by annealing principles. Unlike
diffusion sampling (Bruna & Han, 2024; Chung et al., 2022; Shih et al., 2024; Zhou et al., 2023)
which requires pre-learning from a dataset of unknown distribution, AF training does not require
preliminary samples from the target q(x). AF is not based on MCMC, thus avoiding issues like slow
mixing, sample correlation, and mode imbalance. And unlike particle-based optimization methods,
AF scales linearly with sample size and dimensions. Once trained, one simply samples from π0(x),
and the learned transport map directly pushes these samples towards the target distribution.

2 PRELIMINARIES

Neural ODE and Continuous Normalizing Flow: A Neural ODE is a continuous model where the
trajectory of data is modeled as the solution of an ordinary differential equation (ODE). Formally,
in Rd, given an input x(t0) = x0 at time t0, the transformation to the output x(T) is governed by:

dx(t)

dt
= v(x(t), t), (1)

where v(x(t), t) represents the velocity field, which is of the same dimension as x(t) and is param-
eterized by a neural network with input x(t) and t.

A Continuous Normalizing Flow (CNF) is a class of normalizing flows where the transformation of
a probability density from a base distribution p(x) (at t = 0) to a target distribution q(x) (at t = T)
is governed by a Neural ODE. The marginal density of x(t), denoted as ρ(x, t), evolves according
to the continuity equation derived from the ODE in Eq. (1). This continuity equation is written as:

∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, ρ(x, 0) = p(x), (2)

where the divergence ∇ · (ρv) accounts for the change in density as the flow evolves over time.

Dynamic Optimal Transport (OT): The Benamou-Brenier equation (Benamou & Brenier, 2000)
below provides the dynamic formulation of Optimal Transport T .

inf
ρ,v

∫ 1

0

Ex(t)∼ρ(·,t)∥v(x(t), t)∥2dt

s.t. ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = p, ρ(·, 1) = q,

(3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The optimization problem seeks to find the optimal transport map that moves mass from the base
density p to the target density q, subject to the continuity equation (2) to ensure that ρ(·, t) evolves as
a valid probability density over time. Additionally, the constraint ρ(·, 1) = q ensures that the target
density is reached by the end of the time horizon. The time horizon is scaled to [0, 1].

3 ANNEALING FLOW MODEL

The annealing philosophy (Gelfand et al., 1990; Neal, 2001; Sorkin, 1991; Van Groenigen & Stein,
1998) refers to gradually transitioning an initial flattened distribution to the target distribution as the
temperature decreases. Building on this idea, we introduce Annealing Flow (AF), a sampling algo-
rithm that learns a continuous normalizing flow to gradually map an initial easy-to-sample density
π0(x) to the target density q(x) through a set of intermediate distributions.

We define q(x) = Zq̃(x) where q̃(x) represents the unnormalized target distribution given in explicit
form. Next, we define a sequence of intermediate distributions fk(x) that interpolate between an
easy-to-sample initial distribution π0(x) (e.g., a Gaussian) and the target q(x). These intermediate
distributions are formulated as:

fk(x) = π0(x)
1−βkq(x)βk = Zkf̃k(x), (4)

Here f̃k(x) = π0(x)
1−βk q̃(x)βk , and βk is an increasing sequence with β0 = 0 and βK = 1. This

formulation ensures that f̃0(x) = π0(x) and f̃K(x) = q̃(x). The sequence 0 = β0 < β1 < · · · <
βK = 1 controls the gradual transition between the two distributions.

The above construction aligns with the annealing philosophy. As βk increases, f̃k(x) gradually
sharpens toward the target q̃(x), starting from the initially flattened distribution around π0(x). These
annealed densities serve as a bridge, providing a gradual flow path from the easy-to-sample distri-
bution π0(x) to the target density q(x). Figure 1 provides an intuitive illustration of this process,
where π0(x) is a standard Gaussian, and q(x) is a Gaussian mixture model with six modes.

(a) β0 = 0

T0
[0, t1]

(b) β1 = 1/3

T1
[t1, t2]

(c) β2 = 2/3

T2
[t2, 1]

(d) β3 = 1

Figure 1: Illustration of the Annealing Flow Map, with a set of intermediate distributions from
π0(x) = N(0, I2) to q(x), a GMM with 6 modes.

3.1 OPTIMAL TRANSPORT MAP

We aim to learn a continuous optimal transport map between an easy-to-sample distribution π0(x)
and the target distribution q(x). Once trained, users simply sample {x(i)(0)}ni=1 ∼ π0(x), and
the transport map pushes them to {x(i)(1)}ni=1 ∼ q(x). The transport map T evolves the density
according to (2), which in turn drives the evolution of the sample x(t) following the ODE in (1):

T (x(t)) = x(0) +

∫ t

0

v(x(s), s)ds, t ∈ [0, 1]. (5)

We divide the time horizon [0, 1] of T into K intervals [tk−1, tk] for k = 1, 2, . . . ,K, where t0 =
0 and tK = 1. Guided by the annealing flow path defined in (4), the continuous flow map T
gradually transforms the density from f0(x) to f1(x) over [0, t1], and continues this process until
fK−1(x) is transformed into fK(x) = q(x) over [tK−1, tK]. Figure 1 shows this progression
with two intermediate distributions. For clarity, we denote Tk(x) as the segment of the continuous
normalizing flow during [tk−1, tk], which pushes the density from fk−1(x) to fk(x).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 OBJECTIVE OF ANNEALING FLOW NET

Annealing Flow aims to learn each transport map Tk based on dynamic OT objective (3) over the
time horizon [tk−1, tk], where the velocity field vk(x(t), t) is learned using a neural network. The
terminal condition ρ(·, 1) = q in (3) can be relaxed by introducing a Kullback–Leibler (KL) diver-
gence term (see, for instance, Ruthotto et al. (2020)). Consequently, minimizing the objective (3) for
dynamic optimal transport Tk : fk−1(x)→ fk(x) can be reduced to solving the following problem:

Tk = argmin
T

{
KL(T#fk−1∥fk) + γ

∫ tk

tk−1

Ex(t)∼ρk(·,t)∥vk(x(t), t)∥2dt

}
, (6)

subject to ρk(x(t), t) and vk(x(t), t) evolving according to (2). Here, γ > 0 is a regulariza-
tion parameter, vk(x(t), t) denotes the velocity field during the k-th time interval [tk−1, tk], and
KL(T#fk−1∥fk) represents the KL divergence between the push-forward density T#fk−1 and the
target density fk. Additionally, the constraint (2) ensures that x(t) follows the ODE trajectory de-
fined by (1) during t ∈ [tk−1, tk], which is given by:

x(t) = x(tk−1) +

∫ t

tk−1

vk(x(s), s)ds, t ∈ [tk−1, tk]. (7)

We can rewrite f̃k(x) = ZeEk(x), where Ek(x) is the energy function, with the associated un-
normalized energy given by Ẽk(x) = − log f̃k. The following proposition shows that once we
have obtained samples from fk−1(x), the KL divergence in (6) can be computed exactly based on
vk(x(t), t) and Ẽk(x). Therefore, learning an optimal transport map Tk reduces to learning the
optimal vk(x(t), t). The proof is provided in Appendix A.1.

Proposition 1 (KL-Divergence Decomposition) Given the unnormalized density fk−1, the KL-
Divergence between T#fk−1 and fk is equivalent to:

KL(T#fk−1∥fk) = c+ Ex(tk−1)∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds

]
, (8)

up to a constant c that is independent of vk(x(s), s).

Given x(tk−1) from fk−1(x), the value of x(tk) inside the energy function Ẽk can be calculated
as shown in equation (7). Additionally, according to the proposition below, the second term in the
objective (6) can be relaxed as a discretized sum. The proof is provided in Appendix A.1.

Proposition 2 (Wasserstein Distance Discretization) Let x(t) be particle trajectories driven by a
smooth velocity field vk(x(t), t) over the time interval [tk−1, tk], where hk = tk − tk−1. Assume
that vk(x, t) is Lipschitz continuous in both x and t. By dividing [tk−1, tk] into S equal mini-
intervals with grid points tk−1,s (where s = 0, 1, . . . , S and tk−1,0 = tk−1, tk−1,S = tk), we
have:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt =

S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(h2

k/S). (9)

As hk → 0 or S →∞, the error term O(h2
k/S) becomes negligible.

One can observe that the RHS of (9) can be interpreted as the discretized sum of the squared
Wasserstein-2 distance. The dynamic W2 regularization encourages smooth transitions from fk−1

to fk with minimal transport cost, promoting efficient mode exploration.

Next, by incorporating Propositions 1 and 2 into objective (6), the final objective becomes:

min
vk(·,t)

Ex(tk−1)∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s)ds+ α

S−1∑
s=0

∥x(tk−1,s+1)− x(tk−1,s)∥2
]
.

(10)
Here, α = γS/hk and vk(x(s), s) is learned by a neural network. We break the time interval
[tk−1, tk] into S mini-intervals, and x(tk−1,s+1) is computed as in equation (7).

After learning, connecting the Annealing Flow nets together yields a smooth flow map T : T1 →
T2 → · · · → TK , which transforms samples from π0(x) to the target q(x). Please see Section 4.2
for efficient sampling of Annealing Flow and its comparisons with other sampling methods.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 PROPERTIES OF LEARNED VELOCITY FIELD

The objective in (10) can be reformulated as shown below when hk = tk − tk−1 → 0. The proof is
provided in Appendix A.2.

Proposition 3 (Objective Reformulation) Denote hk = tk− tk−1, and let sk = ∇ log fk(x) denote
the score function of fk. As hk → 0 and with γ = 1

2 (so that α = S
2hk

), the objective in (10)
becomes equivalent to the following:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk. (11)

Define L2(fk−1) =
{
v : Rd → Rd

∣∣ ∫
Rd ∥v(x)∥2fk−1(x) dx <∞

}
as the L2 space over

(Rd, fk−1(x)dx). We can then establish the following property, with proofs provided in Appendix
A.2:

Proposition 4 (Optimal Velocity Field as Score Difference) Suppose hk → 0 and γ = 1
2 . Let fk−1

and fk be continuously differentiable on Rd. Assume that ∇ · vk(x) exists for all x ∈ Rd, and
∇ · vk(x), sk−1 and sk belong to L2(fk−1). Assume that the components of vk are independent
and lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions, the minimizer of (10) is:

vk
∗ = sk − sk−1. (12)

Therefore, the infinitesimal optimal vk
∗ is equal to the difference between score function of the next

density, fk, and the current density, fk−1. This suggests that when the two intermediate densities are
sufficiently close, i.e., when the number of βk is large enough, the optimal velocity field equals the
difference between the score functions. By adding more intermediate densities, one can construct a
sufficiently smooth transport map T that exactly learns the mapping between each pair of densities.

Additionally, one can observe that when each f̃k(x) is set to the target q(x), i.e., when all βk are set
to 1, and the second term in the objective (6) is relaxed to static W2 regularization, the objective of
Annealing Flow becomes equivalent to Wasserstein gradient flow. This is detailed in Appendix B.

4 TRAINING AND SAMPLING OF ANNEALING FLOW NET

4.1 BLOCK-WISE TRAINING

Training of the k-th flow map in Annealing Flow begins once the (k − 1)-th block has completed
training. Given the samples {x(i)(tk−1)}ni=1 ∼ fk−1(x) produced after the (k−1)-th block, we can
replace Ex∼fk−1

with the empirical average. The divergence of the velocity field can be computed
either by brute force or via the Hutchinson trace estimator (Hutchinson, 1989; Xu et al., 2024a):

∇ · vk(x, t) ≈ Eϵ∼N(0,Id)

[
ϵT

vk(x+ σϵ, t)− vk(x, t)

σ

]
. (13)

This approximation becomes exact as σ → 0. Further details are provided in C.2. Additionally, we
apply the Runge-Kutta method for numerical integration, with details provided in C.3.

Our algorithm uses a block-wise training of the continuous normalizing flow map. Specifically, the
training of Annealing Flow is summarized in Algorithm 1. The block-wise training approach of
Annealing Flow significantly reduces memory and computational requirements, as only one neural
network is trained at a time, independent of the other flow networks.

4.2 EFFICIENT SAMPLING AND COMPARISONS WITH OTHER METHODS

Once the continuous normalizing flow map T is learned, the sampling process of the target q(x)
can be very efficient. Users can simply sample {x(i)(t0 = 0)}ni=1 from π0(x), and then directly
calculate {x(i)(tK = 1)}ni=1 ∼ q(x) through Annealing Flow nets:

x(i)(tk) = Tk(x(i)(tk−1)) = x(i)(tk−1) +

∫ tk

tk−1

vk(x
(i)(s), s)ds, k = 1, 2, · · · ,K. (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Block-wise Training of Annealing Flow Net
Require: Unnormalized target density q̃(x); an easy-to-sample π0(x); {β1, β2, · · · , βK−1}; To-
tal number of blocks K.
1: Set β0 = 0 and βK = 1
2: For k = 1, 2, · · · ,K:
3: Set f̃k(x) = π0(x)

1−βk q̃(x)βk ;
4: Sample {x(i)(t0)}ni=1 from π0(x);
5: Compute the pushed samples x(i)(tk−1) from the trained (k − 1) blocks via (14);
6: Optimize vk(·, t) upon minimizing the objective function.

(Optional Refinement Blocks)
7: For k = K + 1,K + 2, · · · , L:
8: Set βk = 1 and optimize vk(·, t) following the procedures outlined above.

MCMC methods require long mixing times when sampling from complex distributions. In contrast,
Annealing Flow (AF) pushes samples directly from π0(x) through the learned transport map, en-
abling faster sampling, especially for large sample sizes. MCMC also generates correlated samples,
as each new sample depends on the previous one, reducing the effective sample size (ESS) and
efficiency. AF avoids this by producing independent samples, improving overall sample quality.

Additionally, MCMC struggles with multimodal distributions, as chains get trapped in local modes.
While methods like Parallel Tempering may attempt to explore all modes in low-dimensions, they do
not ensure proportional time across them, causing imbalanced sampling. In contrast, AF generates
balanced samples across modes in line with the target distribution, as illustrated in the below figure.

(a) AF (b) MH (c) HMC (d) PT

Figure 2: Comparison of different sampling methods for the density p(x) = 2
3N(−5, 1)+ 1

3N(5, 1)

NN-based MCMC algorithms still struggle with issues like slow mixing and correlated samples.
Particle-based methods like SVGD and MIED avoid burn-in period and produce less correlated
samples, but their reliance on kernel computations leads to polynomial scaling with sample size,
and they are sensitive to kernel hyperparameters. In contrast, AF computes samples independently
through (14), allowing the sampling process to scale linearly with both sample size and dimensions.

We comment that Annealing Flow indeed needs more expensive pre-training than MCMC, which,
however, can be done offline and only needs to be done once and then deployed for sampling.
Once trained, AF samplers are highly efficient, generating 10,000 samples in an average of 1.5
seconds in our experiments. In contrast, MCMC takes around 1 minute to sample 10,000, while
particle-based methods take significantly longer—over 20 minutes. AF also performs well on multi-
modal and high-dimensional densities, where other methods often struggle. Detailed comparisons
of algorithms, including the training and sampling times, are provided in D.1.

5 IMPORTANCE FLOW

Sampling from complex distributions is fundamental, which can benefit tasks like normalizing con-
stant estimation, Bayesian analysis, and various machine learning problems. Here, we briefly discuss
another aspect: using Annealing Flow to sample from the Least-Favorable-Distribution (LFD) and
obtain a low-variance Importance Sampling (IS) estimator, referred to as Importance Flow.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 SETTINGS

Suppose we want to estimate EX∼π0(x) [h(X)], which cannot be computed in closed form. A nat-
ural approach is to use Monte Carlo estimation by sampling {xi}ni=1 from π0(x). However, if xi

consistently falls in regions where h(x) has extreme values, the estimator may exhibit high variance.
For example, with π0(x) = N(0, Id) and h(x) = 1∥x∥≥6, almost no samples will satisfy ∥x∥ ≥ 6,
resulting in a zero estimate.

To address this situation, we can select an appropriate proposal distribution q(x) and rewrite the
expectation and MC estimator as:

Ex∼π0(x) [h(x)] = Ex∼q(x)

[
π0(x)

q(x)
h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q(xi)
h(xi), xi ∼ q(x). (15)

It is well-known that the theoretically optimal proposal for the importance sampler is: q∗(x) ∝
π0(x)|h(x)| := q̃∗(x). However, given the definition of q̃∗(x), it is often difficult to sample from,
especially when π0(x) or h(x) is complex. Consequently, people typically choose a distribution that
is similar in shape to the theoretically optimal proposal but easier to sample from.

Annealing Flow enables sampling from q∗(x), allowing the construction of an Importance Sampling
(IS) estimator. However, q∗(x) is only known up to the normalizing constant Z, where q∗(x) =
1
Z q̃(x) and Z = Ex∼π0(x)[h(x)] is our target. Therefore, assuming no knowledge on Z, a common
choice can be the Normalized IS Estimator: ÎN =

∑n
i=1

π0(xi)
q̃(xi)

h(xi)/
∑n

i=1
π0(xi)
q̃(xi)

. However, this
estimator is often biased, as can be seen from Jensen’s Inequality.

5.2 DENSITY RATIO ESTIMATION

Using samples from q∗(x) and those along the trajectory obtained via Annealing Flow, we can
train a neural network for Density Ratio Estimation (DRE) of π0(x)

q∗(x) . Inspired by works Choi et al.
(2022); Rhodes et al. (2020); Xu et al. (2023), we can train a continuous neural network r(x) =
rK(x; θK) ◦ rK−1(x; θK−1) ◦ · · · ◦ r1(x; θ1), where samples xi ∼ fK = q∗(x) are inputs and the
output is the density ratio π0(xi)

q∗(xi)
. Each rk(x; θk) is trained using the following loss:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
.

After successful training, r∗k(x) = log fk−1(x)
fk(x)

, and thus r∗(x) =
∑K

k=1 r
∗
k(x) = log π0(x)

q∗(x) . Please
refer to Appendix A.3 and C.5 for the proof and further details. To obtain the optimal importance
sampling estimator, we can then directly use samples {xi}ni=1 ∼ q∗(x) from Annealing Flow and
apply (15) together with the DRE: 1

n

∑n
i=1 exp(r

∗(xi)) · h(xi). The estimator is unbiased and can
achieve zero variance theoretically.

6 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments comparing Annealing Flow (AF) with widely-
used MCMC algorithms, including Hamiltonian Monte Carlo (HMC) and Parallel Tempering (PT),
as well as other state-of-the-art techniques, including particle-based methods: Stein Variational Gra-
dient Descent (SVGD) (Liu & Wang, 2016) and Mollified Interaction Energy Descent (MIED) (Li
et al., 2023), alongside NN-based MCMC approaches: AI-Sampler (AIS) (Egorov et al., 2024).
The experimental details can be found in C.3.

We test these algorithms on challenging distributions, including Exp-Weighted Gaussian, Gaus-
sian Mixture Models (GMM), funnel distributions, and Truncated Normal with extreme radii across
varying dimensions. Maximum Mean Discrepancy (MMD) and Wasserstein Distance are used as
evaluation metrics, but only reported for the GMM due to the need for true samples. For other
experiments, we provide sample and density plots for easier comparison, as shown in Appendix D.

In addition, we compare our algorithm with others on Hierarchical Bayesian Logistic Regression
across a range of datasets. We also report the preliminary results of the Importance Flow (discussed
in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying c and dimensions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Gaussian Mixture Models (GMM): Figure 3 presents the sampling results of different methods on a
2D GMM, where the modes are distributed across circles with varying radii. We also experimented
on a GMM with modes aligned on the vertices of a cube in higher dimensions, with the number of
modes ranging from 8 to 64. Evaluation metrics and additional figures for these experiments are
provided in Table 4 in Appendix D.

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 3: Sampling methods for Gaussian Mixture Models (GMM) with 8 and 10 modes distributed on circles
with radii r = 10, 12. The acronyms of the methods are listed in the first paragraph of this section.

Truncated Normal Distribution: Figure 4 shows the sampling results for q̃(x) = 1∥x∥≥cN(0, Id),
based on 5000 samples for each method. SVGD, MIED, and AI-Sampler are designed for
continuous densities. SVGD and MIED specifically require the gradient of the log-probability,
given by ∇ log

(
1∥x∥≥cN(0, Id)

)
in this experiment. Despite relaxing the indicator function to

1/(1+ exp(−k(∥x∥− c))) for large k, the algorithms failed to yield meaningful results (See Figure
8 in Appendix D for the results of their algorithms). Therefore, we compare AF with MH, HMC,
and PT. We also tested our algorithm on 10D space. Additional figures are given in Appendix D.

(a) True (b) AF (c) MH (d) HMC (e) PT

Figure 4: Sampling methods for truncated normal distributions with radii c = 6 and c = 8 in 2D
space for the first two rows. The last row presents sampling results in 5D with a radius of 8, projected
onto a 3D space.

Funnel Distribution: A well-known challenging distribution for sampling is the funnel distribution,
defined as:

P (x1, x2, . . . , xd) ∝ N (x1 | 0, σ2)

d−1∏
i=2

N (xi | 0, exp (x1)),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In this setup, xi, i = 2, · · · , d has a variance that depends exponentially on x1, forming a funnel-
shaped distribution. Sampling is challenging due to this exponential dependence, causing extreme
concentration for negative x1 and wide dispersion for positive x1, making exploration difficult,
especially in high dimensions.

We tested our Annealing Flow together with other algorithms on d = 5 case. Here, we present the
sampling result projected onto a 3D space for a funnel distribution in a 5D space, with σ2 = 0.81:

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 5: Sampling Methods for Funnel Distribution in d = 5, projected onto d = 3.

Exp-Weighted Gaussian with an Extreme Number of Modes in High-Dimensional Spaces:

We tested each algorithm on sampling from an extreme distribution:

p(x1, x2, · · · , x10) ∝ e10
∑10

i=1 |xi|− 1
2∥x∥

2

,

which has 210 = 1024 modes arranged at the vertices of a 10-D cube. The L2-distance between
two horizontally or vertically adjacent modes is 20, while the diagonal modes are separated by up to√
10 · 202 ≈ 63.25. We also tested on the extreme distribution:

p(x1, x2, · · · , x50) ∝ e10
∑10

i=1 |xi|+10
∑50

i=11 xi− 1
2∥x∥

2

,

which has 210 = 1024 modes arranged at the vertices of a 50-D space.

Given the challenge of visualizing results in high-dimensional space, we present in Figure 6 the
projected results of the 50-D samples onto the first three dimensions. For comparisons in 10-D
space, please refer to Figure 12 in Appendix D. The performance of SVGD, MIED, and AIS is
inferior to AF, as compared in Figures 13 and 14 in Appendix D.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 6: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in Di-
mension d = 50, projected onto a d = 3 Space.

Table 1: The number of modes successfully explored by each algorithm across various dimensions.

d = 2 d = 5 d = 10 d = 50
True 4 32 1024 1024
AF 4 32 1024 1024

HMC 3.1 24.3 213.5 < 10
PT 3.4 25.2 233.7 < 10

d = 2 d = 5 d = 10 d = 50
SVGD 3.9 28.5 957.3 916.4
MIED 3.8 28.0 923.4 890.6
AIS 3.8 28.3 707.4 125.6

Table 1 presents the number of modes successfully explored by different algorithms across varying
dimensions. Each algorithm was run 10 times, sampling 10,000 points per run, and the average
number of modes explored by each algorithm was then calculated.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Bayesian Logistic Regression: We use the same Bayesian logistic regression setting as in Liu &
Wang (2016), where a hierarchical structure is assigned to the model parameters. The weights
β follow a Gaussian prior p0(β|α) = N(β; 0, α−1), and α follows a Gamma prior p0(α) =
Gamma(α; 1, 0.01). Sampling is performed on the posterior p(β, α|D), where D = {xi, yi}ni=1.
The performance comparisons are shown in Table 2. Detailed settings are given in C.4.

Table 2: Bayesian Logistic Regression: comparison of different algorithms across datasets. In the
table · ± ·/· represents Accuracy(%)±std(%)/log-posterior

Dataset AF SVGD MIED AI-Sampler
Diabetes (d = 8) 76.30± 2.12/− 0.496 76.10± 2.5/− 0.502 75.80± 2.32/− 0.503 76.30± 2.18/−0.493
Breast Cancer (d = 10) 97.85± 1.12/− 0.017 98.83± 3.10/−0.008 98.89± 2.12/−0.008 97.83± 2.80/− 0.019
Heart (d = 13) 88.46± 2.73/−0.316 79.36± 3.78/− 0.588 86.70± 2.24/− 0.321 84.23± 2.54/− 0.458
Australian (d = 14) 86.59± 1.20/−0.361 84.56± 2.87/− 0.365 85.17± 1.34/− 0.369 84.62± 2.30/− 0.375
Ijcnn1 (d = 22) 91.96± 0.05/−0.195 89.44± 0.34/− 0.209 91.84± 0.15/−0.198 88.32± 0.25/− 0.334
Svmguide3 (d = 22) 80.04± 0.70/− 0.472 78.89± 1.20/− 0.479 80.12± 1.04/−0.472 80.12± 0.98/−0.468
German (d = 24) 78.04± 1.70/−0.473 76.43± 1.70/− 0.483 77.21± 1.80/− 0.479 76.89± 1.84/− 0.484

Importance Flow: Table 3 reports the preliminary results of the importance flow (discussed in Sec-
tion 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying radii c and dimensions. This estimation

uses samples from the experiment on the Truncated Normal Distribution, and thus the results for
SVGD, MIED, and AIS cannot be reported. Please refer to C.5 for detailed experimental settings.
Additionally, we discussed a possible extension of the Importance Flow framework in D.2.

Table 3: Comparison of Results for different radii (c) and dimensions (d). The value in parentheses
indicates the standard deviation.

Methods Radius d = 2 d = 3 d = 4 d = 5

True Probability c = 4 3.35e-04 1.13e-03 3.02e-03 6.84e-03
c = 6 1.52e-08 7.49e-08 2.89e-07 9.50e-07

Importance Flow c = 4 4.04e-04(1.0e-04) 1.30e-03(2.3e-04) 3.36e-03(4.23e-04) 7.86e-03(8.21e-04)
c = 6 9.81e-08(4.02e-07) 1.51e-07(1.23e-07) 2.13e-07(8.71e-08) 2.38e-07(3.48e-06)

DRE with HMC Samples c = 4 7.56e-04(4.99e-04) 2.52e-03(6.33e-04) 8.97e-03(9.05e-04) 1.12e-02(1.55e-03)
c = 6 4.35e-07(7.21e-07) 9.01e-07(2.79e-06) 1.82e-07(2.89e-06) 2.31e-06(6.21e-06)

DRE with PT Samples c = 4 6.79e-04(3.58e-04) 2.38e-03(5.40e-04) 5.78e-03(7.98e-03) 9.94e-03(1.13e-03)
c = 6 5.37e-07(9.56e-07) 8.78e-07(2.32e-06) 9.23e-07(2.51e-06) 1.98e-06(7.73e-06)

Naı̈ve MC c = 4 2.75e-04(6.0e-04) 1.18e-03(1.1e-03) 2.71e-03(1.7e-03) 7.94e-03(2.6e-03)
c = 6 0 0 0 0

7 DISCUSSIONS

In this paper, we have proposed the Annealing Flow (AF) framework, a novel and flexible approach
for sampling from high-dimensional and multi-modal distributions. AF offers several advantages
over existing methods, as thoroughly discussed in D.1. Additionally, we have also compared the
training and sampling times in D.1. Extensive experiments demonstrate that AF performs well
across a variety of challenging distributions and real-world datasets.

The Annealing Flow framework presented in this paper is highly flexible and accommodates various
challenging distributions. The concept of ‘Annealing’ in sampling can be interpreted as gradually
transitioning from an easy-to-sample distribution to the target distribution. Therefore, each inter-
mediate distribution fk can be defined flexibly without adhering to (4), as long as the transitions
between fk−1 and fk are smooth and the sequence converges to the target q(x). If the density modes
are close enough, all f̃k(x) can simply be set to the target density q(x), making the Annealing Flow
objective equivalent to the Wasserstein gradient flow, as discussed in Appendix B. Additionally,
we believe that by adding more intermediate distributions, one can obtain intermediate samples at
various time points to construct a low-variance estimator for the normalizing constant. Finally, the
importance flow discussed in Section 5 may be extended to a distribution-free model, allowing one
to learn an importance flow from a dataset for sampling its Least-Favorable Distribution (LFD) with
minimal variance, as further detailed in D.2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Learning to sample better, 2023. URL https:
//arxiv.org/abs/2310.11232. Les Houches 2022 Summer School on Statistical Physics
and Machine Learning.

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport monte carlo. In
International Conference on Machine Learning, pp. 318–330. PMLR, 2021.

Sheldon Axler. Measure, integration & real analysis. Springer Nature, 2020.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

Luigi Bonati, Yue-Yu Zhang, and Michele Parrinello. Neural networks-based variationally enhanced
sampling. Proceedings of the National Academy of Sciences, 116(36):17641–17647, 2019.

Nawaf Bou-Rabee and Jesús Marı́a Sanz-Serna. Randomized hamiltonian monte carlo. 2017.

James Brofos, Marylou Gabrié, Marcus A Brubaker, and Roy R Lederman. Adaptation of the
independent metropolis-hastings sampler with normalizing flow proposals. In International Con-
ference on Artificial Intelligence and Statistics, pp. 5949–5986. PMLR, 2022.

Joan Bruna and Jiequn Han. Posterior sampling with denoising oracles via tilted transport. arXiv
preprint arXiv:2407.00745, 2024.

Alberto Cabezas, Louis Sharrock, and Christopher Nemeth. Markovian flow matching: Accelerating
mcmc with continuous normalizing flows. arXiv preprint arXiv:2405.14392, 2024.

Joseph Carlson, Stefano Gandolfi, Francesco Pederiva, Steven C Pieper, Rocco Schiavilla, Kevin E
Schmidt, and Robert B Wiringa. Quantum monte carlo methods for nuclear physics. Reviews of
modern physics, 87(3):1067–1118, 2015.

Rohitash Chandra, Konark Jain, Ratneel V Deo, and Sally Cripps. Langevin-gradient parallel tem-
pering for bayesian neural learning. Neurocomputing, 359:315–326, 2019.

Omar Chehab, Aapo Hyvarinen, and Andrej Risteski. Provable benefits of annealing for estimating
normalizing constants: Importance sampling, noise-contrastive estimation, and beyond. Advances
in Neural Information Processing Systems, 36, 2024.

Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via infinitesi-
mal classification. In International Conference on Artificial Intelligence and Statistics, pp. 2552–
2573. PMLR, 2022.

Michael CH Choi. Metropolis–hastings reversiblizations of non-reversible markov chains. Stochas-
tic Processes and their Applications, 130(2):1041–1073, 2020.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Adam D Cobb and Brian Jalaian. Scaling hamiltonian monte carlo inference for bayesian neural
networks with symmetric splitting. In Uncertainty in Artificial Intelligence, pp. 675–685. PMLR,
2021.

Rob Cornish, Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet.
Scalable metropolis-hastings for exact bayesian inference with large datasets. In International
Conference on Machine Learning, pp. 1351–1360. PMLR, 2019.

Bo Dai, Niao He, Hanjun Dai, and Le Song. Provable bayesian inference via particle mirror descent.
In Artificial Intelligence and Statistics, pp. 985–994. PMLR, 2016.

11

https://arxiv.org/abs/2310.11232
https://arxiv.org/abs/2310.11232

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gianluca Detommaso, Tiangang Cui, Youssef Marzouk, Alessio Spantini, and Robert Scheichl. A
stein variational newton method. Advances in Neural Information Processing Systems, 31, 2018.

Arnaud Doucet, Will Sussman Grathwohl, Alexander G de G Matthews, and Heiko Strathmann.
Annealed importance sampling meets score matching. In ICLR Workshop on Deep Generative
Models for Highly Structured Data, 2022.

David J Earl and Michael W Deem. Parallel tempering: Theory, applications, and new perspectives.
Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

Evgenii Egorov, Ricardo Valperga, and Efstratios Gavves. Ai-sampler: Adversarial learning of
markov kernels with involutive maps. In Proceedings of the International Conference on Machine
Learning (ICML), 2024.

Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. Efficient bayesian sampling using
normalizing flows to assist markov chain monte carlo methods. arXiv preprint arXiv:2107.08001,
2021.

Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. Adaptive monte carlo augmented
with normalizing flows. Proceedings of the National Academy of Sciences, 119(10):e2109420119,
2022.

Saul Brian Gelfand, Sanjoy K Mitter, et al. On sampling methods and annealing algorithms. 1990.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–
214, 2011.

Jim E Griffin and Stephen G Walker. On adaptive metropolis–hastings methods. Statistics and
Computing, 23:123–134, 2013.

Minghao Gu and Shiliang Sun. Neural langevin dynamical sampling. IEEE Access, 8:31595–31605,
2020.

Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. 2001.

Daniel C Hackett, Chung-Chun Hsieh, Michael S Albergo, Denis Boyda, Jiunn-Wei Chen, Kai-
Feng Chen, Kyle Cranmer, Gurtej Kanwar, and Phiala E Shanahan. Flow-based sampling for
multimodal distributions in lattice field theory. arXiv preprint arXiv:2107.00734, 2021.

Paul Hagemann, Johannes Hertrich, and Gabriele Steidl. Stochastic normalizing flows for inverse
problems: a markov chains viewpoint. SIAM/ASA Journal on Uncertainty Quantification, 10(3):
1162–1190, 2022.

Johannes Hertrich and Robert Gruhlke. Importance corrected neural jko sampling. arXiv preprint
arXiv:2407.20444, 2024.

Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An adaptive-mcmc scheme for setting tra-
jectory lengths in hamiltonian monte carlo. In International Conference on Artificial Intelligence
and Statistics, pp. 3907–3915. PMLR, 2021.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What
are bayesian neural network posteriors really like? In International conference on machine learn-
ing, pp. 4629–4640. PMLR, 2021.

William I Jay and Ethan T Neil. Bayesian model averaging for analysis of lattice field theory results.
Physical Review D, 103(11):114502, 2021.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Parallelised
bayesian optimisation via thompson sampling. In International conference on artificial intelli-
gence and statistics, pp. 133–142. PMLR, 2018.

Georgios Karagiannis and Christophe Andrieu. Annealed importance sampling reversible jump
mcmc algorithms. Journal of Computational and Graphical Statistics, 22(3):623–648, 2013.

Lingxiao Li, Qiang Liu, Anna Korba, Mikhail Yurochkin, and Justin Solomon. Sampling with
mollified interaction energy descent. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. Anisotropic
gaussian mutations for metropolis light transport through hessian-hamiltonian dynamics. ACM
Transactions on Graphics (TOG), 34(6):1–13, 2015.

Zengyi Li, Yubei Chen, and Friedrich T Sommer. A neural network mcmc sampler that maximizes
proposal entropy. Entropy, 23(3):269, 2021.

Qiang Liu. Stein variational gradient descent as gradient flow. Advances in neural information
processing systems, 30, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. Advances in neural information processing systems, 29, 2016.

Bill Lozanovski, David Downing, Phuong Tran, Darpan Shidid, Ma Qian, Peter Choong, Milan
Brandt, and Martin Leary. A monte carlo simulation-based approach to realistic modelling of
additively manufactured lattice structures. Additive Manufacturing, 32:101092, 2020.

Joel E Lynn, I Tews, Stefano Gandolfi, and A Lovato. Quantum monte carlo methods in nuclear
physics: recent advances. Annual Review of Nuclear and Particle Science, 69(1):279–305, 2019.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet. Hamil-
tonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

Alex Matthews, Michael Arbel, Danilo Jimenez Rezende, and Arnaud Doucet. Continual repeated
annealed flow transport monte carlo. In International Conference on Machine Learning, pp.
15196–15219. PMLR, 2022.

Yinglong Miao, Victoria A Feher, and J Andrew McCammon. Gaussian accelerated molecular
dynamics: unconstrained enhanced sampling and free energy calculation. Journal of chemical
theory and computation, 11(8):3584–3595, 2015.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv
preprint arXiv:1712.05438, 2017.

Antony M Overstall, David C Woods, and Ben M Parker. Bayesian optimal design for ordinary
differential equation models with application in biological science. Journal of the American
Statistical Association, 2020.

Manuel Pulido and Peter Jan van Leeuwen. Sequential monte carlo with kernel embedded mappings:
The mapping particle filter. Journal of Computational Physics, 396:400–415, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation. Ad-
vances in neural information processing systems, 33:4905–4916, 2020.

Enric Ribera Borrell, Jannes Quer, Lorenz Richter, and Christof Schütte. Improving control based
importance sampling strategies for metastable diffusions via adapted metadynamics. SIAM Jour-
nal on Scientific Computing, 46(2):S298–S323, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung. A machine
learning framework for solving high-dimensional mean field game and mean field control prob-
lems. Proceedings of the National Academy of Sciences, 117(17):9183–9193, 2020.

Outi MH Salo-Ahen, Ida Alanko, Rajendra Bhadane, Alexandre MJJ Bonvin, Rodrigo Vargas Hon-
orato, Shakhawath Hossain, André H Juffer, Aleksei Kabedev, Maija Lahtela-Kakkonen, An-
ders Støttrup Larsen, et al. Molecular dynamics simulations in drug discovery and pharmaceutical
development. Processes, 9(1):71, 2020.

Babak Shahbaba, Shiwei Lan, Wesley O Johnson, and Radford M Neal. Split hamiltonian monte
carlo. Statistics and Computing, 24:339–349, 2014.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Gregory B Sorkin. Efficient simulated annealing on fractal energy landscapes. Algorithmica, 6:
367–418, 1991.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
side, and Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence
design with denoising autoencoders. In International Conference on Machine Learning, pp.
20459–20478. PMLR, 2022.

Mandt Stephan, Matthew D Hoffman, David M Blei, et al. Stochastic gradient descent as approxi-
mate bayesian inference. Journal of Machine Learning Research, 18(134):1–35, 2017.

Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Non-
reversible parallel tempering: a scalable highly parallel mcmc scheme. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(2):321–350, 2022.

Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. arXiv preprint
arXiv:2405.06672, 2024.

JW Van Groenigen and A Stein. Constrained optimization of spatial sampling using continuous
simulated annealing. Technical report, Wiley Online Library, 1998.

Don Van Ravenzwaaij, Pete Cassey, and Scott D Brown. A simple introduction to markov chain
monte–carlo sampling. Psychonomic bulletin & review, 25(1):143–154, 2018.

Linnea M Wolniewicz, Peter Sadowski, and Claudio Corti. Neural surrogate hmc: Acceler-
ated hamiltonian monte carlo with a neural network surrogate likelihood. arXiv preprint
arXiv:2407.20432, 2024.

Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Advances in Neural Informa-
tion Processing Systems, 33:5933–5944, 2020.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Computing high-dimensional optimal transport by flow
neural networks. arXiv preprint arXiv:2305.11857, 2023.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Normalizing flow neural networks by jko scheme. Advances
in Neural Information Processing Systems, 36, 2024a.

Chen Xu, Jonghyeok Lee, Xiuyuan Cheng, and Yao Xie. Flow-based distributionally robust opti-
mization. IEEE Journal on Selected Areas in Information Theory, 2024b.

Guodong Zhang, Kyle Hsu, Jianing Li, Chelsea Finn, and Roger B Grosse. Differentiable annealed
importance sampling and the perils of gradient noise. Advances in Neural Information Processing
Systems, 34:19398–19410, 2021.

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang. A deep generative approach to conditional
sampling. Journal of the American Statistical Association, 118(543):1837–1848, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOFS IN SECTION 3.2

Proposition 1. (KL-Divergence Decomposition) Given the unnormalized density fk−1, the KL-
Divergence between T#fk−1 and fk is equivalent to:

KL(T#fk−1∥fk) = c+ Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds

]
,

up to a constant c that is independent of vk(x(s), s).

Proof:

Let ρ(x, t) denote the density evolution under the transport map T , as defined in (2). By the con-
straint (2) in the transport map objective (3), we have T#fk−1(x) = ρ(x, tk). The expression for
KL-divergence is given by:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log
T#fk−1(x)

fk(x)

]
= Ex∼ρ(x,tk) [log T#fk−1(x)− log fk(x)] .

Now, recall that − log f̃k(x) = Ẽk(x), so we substitute:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log T#fk−1(x) + Ẽk(x)

]
− logZk

= Ex∼ρ(x,tk−1)

[
log T#fk−1(x(tk)) + Ẽk(x(tk))

]
− logZk,

where the second equality holds under the constraints (1) and (2). The density ρ evolves according
to (2), and equivalently, the particles x(t) evolve according to (1).

Next, to compute log T#fk−1(x(tk)), we use the fact that the dynamics of the pushforward density
ρ are governed by the velocity field vk(x(s), s):

d

ds
log ρ(x(s), s) =

∇ρ(x(s), s) · ∂sx(s) + ∂sρ(x(s), s)

ρ(x(s), s)

=
∇ρ · vk −∇ · (ρvk)

ρ

∣∣∣
(x(s),s)

(by (1) and (2))

=
∇ρ · vk − (∇ρ · vk + ρ∇ · vk)

ρ

∣∣∣
(x(s),s)

= −∇ · vk(x(s), s).

Integrating this equation over the interval s ∈ [tk−1, tk], we find:

log T#fk−1(x(tk)) = log ρ(x(tk), tk) = log ρ(x(tk−1), tk−1)−
∫ tk

tk−1

∇ · vk(x(s), s)ds.

We now substitute this result back into the KL-divergence expression:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk−1)

[
log ρ(x(tk−1), tk−1)−

∫ tk

tk−1

∇ · vk(x(s), s)ds+ Ẽk(x(tk))

]
−logZk.

Note that Ex∼ρ(x(tk−1),tk−1) [log ρ(x(tk−1), tk−1)] is independent of vk(x(s), s) and thus acts as
a constant term, along with − logZk, which we now denote as c. After successfully training the
previous velocity fields, we have ρ(x, tk−1) = fk−1(x). Therefore, the relevant terms for the KL-
divergence are:

KL(T#fk−1 ∥ fk) = c+ Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s)ds

]
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proposition 2. (Wasserstein Distance Discretization) Let x(t) be particle trajectories driven by a
smooth velocity field vk(x(t), t) over the time interval [tk−1, tk], where hk = tk−tk−1. Assume that
vk(x, t) is Lipschitz continuous in both x and t. By dividing [tk−1, tk] into S equal mini-intervals
with grid points tk−1,s (where s = 0, 1, . . . , S and tk−1,0 = tk−1, tk−1,S = tk), the following
approximation holds:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt =

S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
h2
k/S

)
.

As hk → 0 or S →∞, the error term O
(
h2
k/S

)
becomes negligible.

Proof:

Consider particle trajectories x(t) driven by a sufficiently smooth velocity field vk(x(t), t) over
the time interval [tk−1, tk], where hk = tk − tk−1. We divide this interval into S equal mini-
intervals of length δt = hk

S , resulting in grid points tk−1,s = tk−1 + sδt for s = 0, 1, . . . , S, where
δt = tk−tk−1

S .

Within each mini-interval [tk−1,s, tk−1,s+1], we perform a Taylor expansion of x(t) around tk−1,s:

x(tk−1,s+1) = x(tk−1,s) + vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk

dt
δt2 +O(δt3),

where dvk

dt denotes the total derivative of vk with respect to time.

The squared displacement over the mini-interval [tk−1,s, tk−1,s+1] is given by:

∥x(tk−1,s+1)− x(tk−1,s)∥2 =

∥∥∥∥vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk

dt
δt2 +O(δt3)

∥∥∥∥2
= ∥vk(x(tk−1,s), tk−1,s)∥2δt2 +O(δt3),

as we assume that vk is L-Lipschitz continuous and it follows that |dvk

dt | ≤ L. The higher-order
terms O(δt3) become negligible as δt→ 0.

Summing the expected squared displacements over all mini-intervals, we obtain:

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
= δt2

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt3

)
.

Now, we examine the L.H.S. of Proposition 2 by approximating the integral of the expected squared
velocity using a Riemann sum:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt = δt

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt2

)
= δt

[
1

δt2

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(S · δt)

]
+O(S · δt2)

=
1

δt

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
S · δt2

)
,

where the Riemann sum error term O(S · δt2) arises from a well-known result (for instance, see
Chapter 1 of Axler (2020)), given the assumption that vk is L−Lipschitz continuous.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 PROOFS IN SECTION 3.3

Proposition 3. (Objective Reformulation) Denote hk = tk− tk−1, and let sk = ∇ log fk(x) denote
the score function of fk. As hk → 0 and with γ = 1

2 (so that α = S
2hk

), the objective in (10)
becomes equivalent to the following:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.

Proof:

From the Neural ODE (1) and using Taylor’s expansion, we obtain:

x(tk)− x(tk−1) =

∫ tk

tk−1

vk(x(s), s)ds = hkvk(x(tk−1), tk−1) +O(h2
k)

Next, by performing Taylor expansion of Ẽk(x(tk)) around tk−1:

Ẽk(x(tk)) = Ẽk(x(tk−1)) + (x(tk)− x(tk−1))∇Ẽk(x(tk−1)) +O(h2
k)

= Ẽk(x(tk−1)) + hk∇Ẽk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2
k)

Besides, we also have that:∫ tk

tk−1

∇ · vk(x(s), s)ds = hk∇ · vk(x(tk−1), tk−1) +O(h2
k).

As hk → 0, we no longer need to divide the time interval, i.e., S = 1. By defining the score function
as sk = ∇ log fk = −∇Ẽk, the objective function (10) can be then approximated as:

Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds+
1

2hk
∥x(tk)− x(tk−1)∥2

]

= Ex∼fk−1

[(
Ẽk(x(tk−1))− hksk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2

k)
)

−
(
hk∇ · vk(x(tk−1), tk−1) +O(h2

k)
)
+

1

2hk
∥hkvk(x(tk−1)) +O(h2

k)∥2
]

= Ex∼fk−1

[
Ẽk(x) + hk

(
−sk(x) · vk(x, tk−1)−∇ · vk(x, tk−1) +

1

2
∥vk(x, tk−1)∥2

)
+O(h2

k)

]
Since Ex(tk−1)∼fk−1

[Ẽk(x(tk−1))] is independent of vk(x, t), as hk → 0, the minimization of the
leading term is equivalent to:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.

Proposition 4: (Optimal Velocity Field as Score Difference) Suppose hk → 0 and γ = 1
2 . Let

fk−1 and fk be continuously differentiable on Rd. Assume that∇ · vk(x) exists for all x ∈ Rd, and
∇ · vk(x), sk−1 and sk belong to L2(fk−1). Assume that the components of vk are independent
and lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions, the minimizer of (10) is:

vk
∗ = sk − sk−1.

Proof:

Under the assumptions that hk → 0 and γ = 1
2 , we begin by considering the equivalent minimization

objective derived in Proposition 3:

min
vk

J(vk) := min
vk

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Expanding the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx.

Define Br = {x ∈ Rd : ∥x∥ ≤ r}, and let ∂Br denote the boundary of Br, which is the sphere of
radius r. Under the assumption that lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0, we have the following:

|
∫
Rd

∇ · (fk−1 vk) dx| = lim
r→∞

|
∫
Br

∇ · (fk−1vk) dx|

= lim
r→∞

|
∫
∂{x∈Rd:∥x∥<r}

fk−1(x)vk(x) · n(x)dS(x)|

≤ lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2∥nk∥2dS(x)

= lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2dS(x)

= 0

Therefore,
∫
Rd ∇ · (fk−1 vk) dx = 0. Next, we further expand the divergence theorem:

0 =

∫
Rd

∇ · (fk−1(x)vk(x))dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · ∇fk−1(x)dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · sk−1(x) fk−1(x) dx

Substitute the result back into the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx

=

∫
Rd

fk−1(x)

(
(sk−1(x)− sk(x)) · vk(x) +

1

2
∥vk(x)∥2

)
dx.

The integrand does not involve ∇vk,j(x), j = 1, · · · d and higher-order derivatives. Assuming
the components vk,j , j = 1, · · · , d of vk are independent, we can take the functional derivative
component-wise and set them to zero:

δJ

δvk
= fk−1 (vk + (sk−1 − sk)) = 0,

Since fk−1 > 0 for all x, this implies:

vk
∗ = sk − sk−1.

A.3 PROOFS IN SECTION 5.2

Density Ratio Estimation (DRE) By optimizing the following loss function:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
,

the model learns an optimal r∗(x; θk) = log fk−1(x)
fk(x)

.

Proof:

Express the loss function as integrals over x:

Lk =

∫
fk−1(x) log

(
1 + e−rk(x)

)
dx+

∫
fk(x) log

(
1 + erk(x)

)
dx.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Compute the functional derivative of Lk with respect to rk:

δLk(rk)

δrk
= −fk−1(x) ·

e−rk(x)

1 + e−rk(x)
+ fk(x) ·

erk(x)

1 + erk(x)
.

Next, we can set the derivative δlk/δrk(x) to zero to find the minimizer r∗k(x):

r∗k(x) = ln

(
fk−1(x)

fk(x)

)
.

Therefore, by concatenating each r∗k(x), we obtain

r∗(x) =

K∑
k=1

r∗k(x) = log
fK−1(x)

fK(x)
· fK−2(x)

fK−1(x)
· · · · · f0(x)

f1(x)
= log

f0(x)

fK(x)
= log

π0(x)

q∗(x)
,

the log density ratio between π0(x) and q∗(x).

B EQUIVALENCE TO WASSERSTEIN GRADIENT FLOW WHEN β = 1

In this section, we demonstrate the equivalence of Annealing Flow to the Wasserstein Gradient Flow
when all βk, k = 1, 2, . . . ,K, are set to 1, and when using a static Wasserstein regularization, instead
of the dynamic Wasserstein regularization derived in Proposition 9.

Langevin Dynamics and Fokker-Planck Equation: Langevin Dynamics is represented by the follow-
ing SDE.

dXt = −∇E(Xt) dt+
√
2 dWt, (16)

where E is the energy function of the equilibrium density f(x, T) = q(x). Standard generative
model training typically focuses on the case of a normal equilibrium, i.e., E(x) = x2

2 and q(x) ∝
e−E(x). Let X0 ∼ pX and denote the density of Xt by ρ(x, t). The Langevin Dynamics also
corresponds to the Fokker-Planck Equation (FPE), which describes the evolution of ρ(x, t) towards
the equilibrium ρ(x, T) = q(x), as follows:

∂tρ = ∇ · (ρ∇E +∇ρ), ρ(x, 0) = pX(x). (17)

In our algorithm, we focus on sampling from any distribution using its energy function, requiring
only the unnormalized density. Therefore, E(Xt) represents the potential of any target density q(x).
We initialize samples from an easy-to-sample distribution, ρ(x, 0) = π0(x), such as N(0, Id), and
aim to learn the trajectory between π0(x) and the target q(x). Therefore, sampling from q(x) boils
down to first drawing x(0) from π0(x) and then moving x(0) along the learned trajectory to finally
obtain x(T) ∼ q(x).

JKO Scheme: The Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998) is a time discretiza-
tion scheme for gradient flows to minimize KL(ρ∥q) under the Wasserstein-2 metric. Given a target
density q and a functional F(ρ) = KL(ρ∥q), the JKO scheme approximates the continuous gradient
flow of ρ(x, t) by solving a sequence of minimization problems. Assume there are K steps with
time stamps 0 = t0, t1, · · · , tK = T , at each time stamp tk, the scheme updates ρk at each time step
by minimizing the functional

ρk = argmin
ρ

(
F(ρ) + 1

2τ
W 2

2 (ρ, ρk−1)

)
, (18)

where W2(ρ, ρk−1) denotes the squared 2-Wasserstein distance between the probability measures
ρ and ρk. It was proven in Jordan et al. (1998) that as h = tk − tk−1 approaches 0, the solution
ρ(·, kh) provided by the JKO scheme converges to the solution of (17), at each step k.

The later works Xu et al. (2024a) have further shown that solving for the transport density ρk by
(18) is equivalent to solving for the transport map Tk by:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Tk = arg min
T :Rd→Rd

(
KL(T#ρk−1∥q) +

1

2τ
Ex∼ρk−1

∥x− Tk(x)∥2
)

(19)

Therefore, we immediately see that the Wasserstein gradient flow based on the discretized JKO
scheme is equivalent to (6) when we set each f̃k(x) as the target distribution q(x), i.e., when all the
βk are set to 1, and when the second term in the objective (6) is relaxed to a static W2 regularization.

This suggests that when the modes of the densities are not too far apart, and it is difficult to find a
proper sequence of βk, one can simply set all f̃k(x) in our algorithm as the target density q(x), to
construct a discretized sequence of transport maps based on Wasserstein gradient descent.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

To assess the performance of our model, we utilized two key metrics: Maximum Mean Discrepancy
(MMD) and Wasserstein Distance, both of which measure the divergence between the true samples
and the samples generated by the algorithms.

Maximum Mean Discrepancy (MMD)

MMD is a non-parametric metric used to quantify the difference between two distributions based on
samples. Given two sets of samples X1 ∈ Rn1×d and X2 ∈ Rn2×d, MMD computes the kernel-
based distances between these sets. Specifically, we employed a Gaussian kernel:

k(x, y) = exp{−α∥x− y∥22},

parameterized by a bandwidth α. The MMD is computed as follows:

MMD(X1, X2) =
1

n2
1

∑
i,j

k(Xi
1, X

j
1) +

1

n2
2

∑
i,j

k(Xi
2, X

j
2)−

2

n1n2

∑
i,j

k(Xi
1, X

j
2),

where k(·, ·) represents the Gaussian kernel. In our experiments, we set α = 1/γ2 and γ =
0.1 ·median dist, where median dist denotes the median of the pairwise distances between the two
datasets.

Wasserstein Distance

In addition to MMD, we used the Wasserstein distance, which measures the cost of transporting
mass between distributions. Given two point sets X ∈ Rd and Y ∈ Rd, we compute the pairwise
Euclidean distance between the points. The Wasserstein distance is then computed using the optimal
transport plan via the linear sum assignment method (from scipy.optimize package):

W (X,Y) =
1

n

n∑
i=1

∥Xr(i) − Yc(i)∥2,

where r(i) and c(i) are the optimal row and column assignments determined through linear sum
assignment.

In all experiments, we sample 10,000 points from each model and generate 10,000 true samples
from the GMM to calculate and report both MMD and Wasserstein distance. Note that the smaller
the two metrics mentioned above, the better the sampling performance.

C.2 HUTCHINSON TRACE ESTIMATOR

The objective functions in (10) and (11) involve the calculation of ∇ · vk(x, t), i.e., the divergence
of the velocity field represented by a neural network. This may be computed by brute force using
reverse-mode automatic differentiation, which is much slower and less stable in high dimensions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We can express ∇ · vk(x, t) = Eϵ∼N(0,Id)

[
ϵTJv(x)ϵ

]
, where Jv(x) is the Jacobian of vk(x, t) at

x. Given a fixed ϵ, we have Jv(x)ϵ = limσ→0
vk(x+σϵ)−vk(x)

σ , which is the directional derivative
of vk along the direction ϵ. Thus, for a sufficiently small σ > 0, we can propose the following
estimator (Hutchinson, 1989; Xu et al., 2024a):

∇ · vk(x, t) ≈ Eϵ∼N(0,Id)

[
ϵT

vk(x+ σϵ, t)− vk(x, t)

σ

]
. (20)

This approximation becomes exact as σ → 0. In our experiments, we set σ = 0.02/
√
d.

C.3 OTHER ANNEALING FLOW SETTINGS

Time stamps and numerical integration

By selecting K values of β, we divide the original time scale [0, 1] of the Continuous Normalizing
Flow (2) and (3) into K intervals: [tk−1, tk] for k = 1, 2, . . . ,K. Notice that the learning of each
velocity field vk depends only on the samples from the (k − 1)-th block, not on the specific time
stamp. Therefore, we can re-scale each block’s time interval to [0, 1], knowing that using the time
stamps [(k − 1)h, kh] yields the same results as using [0, 1] for the neural network vk(x, t). For
example, the neural network will learn vk(x, 0) = vk(x, (k − 1)h) and vk(x, 1) = vk(x, kh),
regardless of the time stamps.

Recall that we relaxed the shortest transport map path into a dynamic W2 regularization loss via
Proposition 2. This requires calculating intermediate points x(tk−1,s), where s = 0, 1, . . . , S. We
set S = 3, evenly spacing the points on [tk−1, tk], resulting in the path points x(tk−1), x(tk−1 +
hk/3), x(tk−1 + 2hk/3), x(tk). To compute each x(tk−1,s), we integrate the velocity field vk
between tk−1 and tk−1,s, using the Runge-Kutta method for numerical integration. Additionally,
for each x(tk−1,s), we calculate the velocity field at an intermediate time step between tk−1,s−1 and
tk−1,s to enable accurate numerical integration. Specifically, to calculate x(t+h) based on x(t) and
an intermediate time stamp t+ h

2 :

x(t+ h) = x(t) +
h

6
(k1 + 2k2 + 2k3 + k4) ,

k1 = v(x(t), t), k2 = v

(
x(t) +

h

2
k1, t+

h

2

)
,

k3 = v

(
x(t) +

h

2
k2, t+

h

2

)
, k4 = v (x(t) + hk3, t+ h)

Here, h is the step size, and v(x, t) represents the velocity field.

The choice of βk

In the experiments on Gaussian Mixture Models (GMM) and Exp-Weighted Gaussians with various dimensions
and radii, we set the number of intermediate βk values to 8, equally spaced such that β0 = 0, β1 = 1/8,
β2 = 2/8, . . . , β8 = 1. We chose the easy-to-sample distribution π0(x) as N(0, Id). Finally, we added 2
refinement blocks. The intermediate distributions are defined as:

f̃k(x) = π0(x)
1−βk q̃(x)βk .

In the experiment on the Truncated Normal Distribution, we did not select βk in the same manner as for
the GMM and Exp-Weighted Gaussian distributions. Instead, following the same Annealing philosophy, we
construct a gradually transforming bridge from π0(x) to q̃(x) = 1|x|≥cN(0, Id) by setting each intermediate
density as:

f̃k(x) = 1∥x∥≥c/(k+1)N(0, Id).

This choice also demonstrates that our Annealing Flow is highly flexible and capable of handling a wide range
of challenging distributions.

In the experiment on funnel distributions, we set all βk = 1. Therefore, as discussed in Appendix B, the
algorithm becomes equivalent to a Wasserstein gradient descent problem. We also set the number of blocks to
8, consistent with the other experiments. This indicates that when the densities are largely concentrated in one
region, one can simply set βk to 1 and use a few blocks to find the optimal transport path based on Wasserstein
gradient descent.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The objective

During the experiments, we found that using the Taylor approximation (as described in Proposition 3, with
a slight modification such that the expansion is around x(tk), allowing the loss to include the velocity field
term): Ẽk(xk−1) − Ẽk(xk) = (−hk)∇E(xk) · vk, and replacing the energy function Ẽk(xk) generally led
to better performance. In our experiments on the GMM, Funnel distribution, and Exp-weighted Gaussian, we
consistently used this form. For the experiments on the Truncated Normal and Bayesian Logistic Regression,
the original Ẽk(xk) was used.

Neural networks and selection of other hyperparameters

The neural network structure in our experiments is consistently set with hidden layers of size 32-32-32. During
implementation, we observed that when d ≤ 5, even a neural network with a single hidden layer of size 32 can
perform well for sampling. However, for consistency across all experiments, we uniformly set the structure to
32-32-32.

We sample 100,000 data points from N(0, Id) for training, with a batch size of 1,000. The Adam optimizer is
used with a learning rate of 0.0001, and the maximum number of iterations for each block vk is set to 1,000.
An additional two blocks are added for refinement after βK = 1.

Different numbers of test samples are used for reporting the experimental results: 5,000 points are sampled and
plotted for the experiment on Gaussian Mixture Models, 5,000 points for the experiment on Truncated Normal
Distributions, 10,000 points for the experiment on Funnel Distributions, and 10,000 points for the experiment
on Exp-Weighted Gaussian with 1,024 modes in 10D space.

C.4 BAYESIAN LOGISTIC REGRESSION

We use a hierarchical Bayesian structure for logistic regression across a range of datasets provided by LIBSVM.
The detailed setting of the Bayesian Logistic Regression is as follows.

We adopt the same Bayesian logistic regression setting as described in Liu & Wang (2016), where a hier-
archical structure is assigned to the model parameters. The weights β follow a Gaussian prior, p0(β|α) =
N(β; 0, α−1), and α follows a Gamma prior, p0(α) = Gamma(α; 1, 0.01). The datasets used are binary,
where xi has a varying number of features, and yi ∈ {+1,−1} across different datasets. Sampling is per-
formed from the posterior distribution:

p(β, α|D) ∝ Gamma(α; 1, 0.01) ·
D∏

d=1

N(βd; 0, α
−1) ·

n∏
i=1

1

1 + exp(−yiβTxi)
,

We set βk = 1 and use 8 blocks to train the Annealing Flow.

During testing, we use all algorithms to sample 1,000 particles of β and α jointly, and use {β(i)}1000i=1 to con-
struct 1,000 classifiers. The mean accuracy and standard deviation are then reported in Table 2. Additionally,
the average log posterior in Table 2 is reported as:

1

|Dtest|
∑

x,y∈Dtest

log
1

|C|
∑
θ∈C

p(y|x, θ).

C.5 IMPORTANCE FLOW

We report the results of the importance sampler (discussed in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying c and dimensions, based on our Annealing Flow. To estimate Ex∼N(0,I)

[
1∥x∥≥c

]
, we know that

the theoretically optimal proposal distribution which can achieve 0 variance is q̃∗(x) = 1∥x∥≥cN(0, I). Then
the estimator becomes:

EX∼π0(x) [h(X)] = EX∼q∗(x)

[
π0(x)

q∗(x)
· h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q∗(xi)
· h(xi), xi ∼ q∗(x),

where π0(x) = N(0, Id), h(x) = 1∥x∥≥c and q∗(x) = Z · q̃∗(x).

Therefore, the Importance Flow consists of two parts: First, using Annealing Flow to sample from q̃∗(x);
second, constructing a Density Ratio Estimation (DRE) neural network using samples from {xi}ni=1 ∼ q̃∗(x)
and {yi}ni=1 ∼ N(0, Id), as discussed in Section 5.2. The estimator becomes:

1

n

n∑
i=1

DRE(xi) · h(xi).

22

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The Naive MC results comes from directly using {yi}ni=1 ∼ N(0, Id) to construct estimator 1
n

∑n
i=1 1∥yi∥≥c.

When c ≥ 6, the Naive MC methods consistently output 0 as the result.

In our experiment, we use a single DRE neural network to construct the density ratio between π0(x) and
q∗(x) = Z · 1∥x∥≥cN(0, I) directly. The neural network structure consists of hidden layers with sizes 64-64-
64. The size of the training data is set to 100,000, and the batch size is set to 10,000. We use 30 to 70 epochs
for different distributions, depending on the values of c and dimension d. The Adam optimizer is used, with a
learning rate of 0.0001. The test data size is set to 1,000, and all results are based on 200 estimation rounds,
each using 500 samples.

C.6 DETAILS OF OTHER ALGORITHMS

The Algorithm 2, 3, and 4 introduce the algorithmic framework of Metropolis-Hastings (MH), Hamiltonian
Monte Carlo (HMC), and Parallel Tempering (PT) compared in our experiments.

Algorithm 2 Metropolis-Hastings Algorithm
1: Initialize x0

2: for t = 1 to N do
3: Propose x∗ ∼ q(x∗|xt−1)

4: Compute acceptance ratio α = min
(
1, π(x∗)q(xt−1|x∗)

π(xt−1)q(x∗|xt−1)

)
5: Sample u ∼ Uniform(0, 1)
6: if u < α then
7: xt = x∗

8: else
9: xt = xt−1

10: end if
11: end for
12: return {xt}Nt=0

Algorithm 3 Hamiltonian Monte Carlo (HMC)
1: Initialize x0

2: for t = 1 to N do
3: Sample p ∼ N (0,M)
4: Set (x, p)← (xt−1, p)
5: for i = 1 to L do
6: p← p− ϵ

2∇U(x)

7: x← x+ ϵM−1p
8: p← p− ϵ

2∇U(x)
9: end for

10: Compute acceptance ratio α = min (1, exp(H(xt−1, pt−1)−H(x, p)))
11: Sample u ∼ Uniform(0, 1)
12: if u < α then
13: xt = x
14: else
15: xt = xt−1

16: end if
17: end for
18: return {xt}Nt=0

In our experiments, we set the proposal density as q(x′|x) = N (x; 0, Id). We use 5 replicas in Parallel
Tempering (PT), with a linear temperature progression ranging from T1 = 1.0 to Tmax = 2.0, and an exchange
interval of 100 iterations. For HMC, we set the number of leapfrog steps to 10, with a step size (ϵ) of 0.01, and
the mass matrix M is set as the identity matrix. Additionally, we use the default hyperparameters as specified
in SVGD (Liu & Wang, 2016), MIED (Li et al., 2023), and AI-Sampler (Egorov et al., 2024). In the actual
implementation, we found that the time required for SVGD to converge increases significantly with the number
of samples. Therefore, in most experiments, we sample 1000 data points at a time using SVGD, aggregate the
samples, and then generate the final plot.

D MORE RESULTS

We adopt the standard Annealing Flow framework discussed in this paper for experiments on Gaussian Mixture
Models (GMM), Truncated Normal distributions, and Exp-Weighted Gaussian distributions. For experiments
on funnel distributions, we set each f̃k(x) as the target q(x), under which the Annealing Flow objective be-
comes equivalent to the Wasserstein Gradient Flow based on the JKO scheme, as discussed in B. Please refer
to C.3 for βk selections.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 4 Parallel Tempering Algorithm
1: Initialize replicas {x1, x2, . . . , xnum replicas} with Gaussian noise
2: Initialize temperatures {T1, T2, . . . , Tnum replicas}
3: for i = 1 to iterations do
4: for j = 1 to num replicas do
5: Propose x∗

j ∼ q(x∗
j |xj) {Using Metropolis-Hastings step for each replica}

6: Compute acceptance ratio αj =
π(x∗

j)

π(xj)

7: Sample u ∼ Uniform(0, 1)
8: if u < αj then
9: xj = x∗

j
10: end if
11: Store xj in samples for replica j
12: end for
13: if i mod exchange interval = 0 then
14: for j = 1 to num replicas− 1 do
15: Compute energies Ej = − log(π(xj) + ϵ), Ej+1 = − log(π(xj+1) + ϵ)

16: Compute ∆ =
(

1
Tj
− 1

Tj+1

)
(Ej+1 − Ej)

17: Sample u ∼ Uniform(0, 1)
18: if u < exp(∆) then
19: Swap xj ↔ xj+1

20: end if
21: end for
22: end if
23: end for
24: return samples from all replicas

Gaussian Mixture Models (GMM)

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 7: Sampling methods for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes distributed on
circles with radii r = 8, 10, 12.

Evaluation Metrics: We report 1) the Maximum Mean Discrepancy (MMD) and 2) the Wasserstein Distance
for the GMM experiments, as both metrics require access to true data samples. The results for these metrics are
presented in Table 4. Please refer to C.1 for more details.

Table 4: MMD and Wasserstein Distance results: ·/· represents MMD/Wasserstein. The first row
corresponds to d = {dimension} GMM-{Number of Modes}.

d = 2 GMM-8 d = 2 GMM-12 d = 3 GMM-8 d = 4 GMM-16 d = 5 GMM-32 d = 6 GMM-64
AF 2.32E-03/7.38E-01 3.01E-03/8.05E-01 5.82E-03/1.97E+00 1.25E-03/3.33E+00 1.57E-03/2.82E+00 4.31E-03/3.53E+00

HMC 7.33E-02/6.28E+00 9.06E-02/8.73E+00 9.92E-02/1.12E+01 9.76E-02/1.98E+01 2.14E-01/2.53E+01 2.15E-01/3.03E+01
PT 6.27E-02/5.71E+00 9.01E-02/7.91E+00 8.83E-02/1.07E+01 8.98E-02/1.53E+01 1.18E-01/1.83E+01 1.05E-01/2.13E+01

SVGD 9.35E-02/9.97E+00 1.85E-01/1.82E+01 9.81E-02/1.13E+01 9.63E-02/2.07E+01 1.98E-01/2.45E+01 1.32E-01/2.34E+01
MIED 2.34E-03/8.01E-01 6.28E-03/9.35E-01 8.01E-03/2.52E+00 3.88E-02/0.89E+01 9.88E-03/7.89E+00 2.03E-02/1.13E+01
AIS 2.33E-03/7.92E-01 4.02E-03/8.13E-01 7.55E-02/2.38E+00 5.26E-03/5.53E+00 6.37E-03/3.83E+00 1.87E-02/9.73E+00

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Truncated Normal Distribution

Relaxations are applied to the Truncated Normal Distribution in all experiments except for MH, HMC, and PT.
Specifically, we relax the indicator function 1∥x∥≥c to 1

1+exp(−k(∥x∥−c))
. We set k = 20 for all experiments.

AIS is designed for continuous densities, and we similarly relax the densities in SVGD and MIED, following
the approach used in AF. The resulting plots are as follows:

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED

Figure 8: Sampling Methods for Truncated Normal Distributions with Radius c = 6, together with
the failure cases of SVGD and MIED.

Each algorithm draws 5,000 samples. It can be observed that MCMC-based methods, including HMC and PT,
produce many overlapping samples. This occurs because when a new proposal is rejected, the algorithms retain
the previous sample, leading to highly correlated sample sets.

Table 5: Proportion of Annealing Flow Samples Within c, Across Different Dimensions

Proportion Within c c = 4 c = 6 c = 8
D = 2 0.17% 0.18% 1.78%
D = 3 0.20% 0.23% 3.23%
D = 4 0.68% 1.48% 3.68%
D = 5 1.46% 3.37% 4.12%
D = 10 2.13% 4.68% 7.13%

(a) True (b) AF (c) MH (d) HMC (e) PT

For dimensions d > 2, visualizing the results by comparing the sample positions using a red sphere surface
becomes challenging. Therefore, we calculate the proportion of samples within radius c. A lower proportion
indicates better sampling performance. Table 5 presents these results. We also calculate the proportion of the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

surface ∥x∥ = c covered by the samples for AF, MH, HMC, and PT. In all experiments with the Truncated
Normal distribution, AF covers more than 95% of the surface area. However, when d ≥ 3 and c ≥ 6, all other
methods cover less than 70% of the surface area.

Funnel Distribution

In the main paper, we present the sampling methods for the funnel distribution with d = 5, projected onto a
3D space. To assess the sample quality, here we present the corresponding results projected onto a 2D space,
plotted alongside the density heat map.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 11: Sampling Methods for Funnel Distribution with σ2 = 0.81 in Dimension d = 5, pro-
jected onto a d = 3 Space.

As seen from both figures, our AF method achieves the best sampling performance on the funnel distribution,
while other methods, such as MIED and AIS, fail to capture the full spread of the funnel’s tail. Additionally,
PT, SVGD, and AIS all fail to capture the sharp part of the funnel’s shape.

Exp-Weighted Gaussian

In the main paper, we present the sampling methods for the Exp-Weighted Gaussian distribution with 1024
modes in a 50D space, projected onto a 3D space. To better assess the sample quality, we now present the
corresponding results projected onto 2D and 1D spaces, plotted alongside the heat map and the true density,
respectively.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 12: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 3D Space.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

(h) True (i) AF (j) HMC (k) PT (l) SVGD (m) MIED (n) AIS

Figure 13: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 2D Space.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 14: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 1D Space.

As seen in Figures 13 and 14, AF produces balanced samples, and its 1D projection closely matches the true
density. While both SVGD and MIED captured around 800 to 900 modes, their samples across the modes are
imbalanced, as observed in the figures. We projected onto each dimension, and the results were similar.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.1 COMPARISONS

Table 6: Comparisons of Different Sampling Methods

Method Key Characteristics Advantages Disadvantages

Annealing Flow
(AF)

- Continuous Normalizing
Flow-based approach.
- Leverages annealing princi-
ples for sampling challenging
high-dimensional, multi-modal
distributions.
- Uses transport maps to trans-
form samples from a base
distribution to the target distri-
bution.

- Independent sampling.
- Balanced mode exploration.
- Handles multi-modal distribu-
tions effectively.
- Once trained, the sampling
process is very fast
- Scales linearly with sample
size and dimensionality.

- Requires pre-training, which
can be computationally expen-
sive.

MCMC

- Metropolis-Hastings, Parallel
Tempering, Hamiltonian Monte
Carlo (HMC) variants.
- Samples sequentially from the
target distribution, with each
sample depending on the previ-
ous one.

- Flexible, general-purpose.
- Doesn’t require pre-training.

- Slow mixing time.
- Struggles with multi-modal
distributions.
- Sample correlation reduces ef-
fective sample size (ESS).
- Imbalanced mode exploration.

Particle-Based
Optimization

(SVGD, MIED)

- Relies on particle dynamics
and kernel methods to sample
from the target distribution.

- No burn-in period.
- Less sample correlation than
MCMC.
- Encourages global search.

- Kernel computations scale
polynomially with sample size.
- Sensitive to kernel hyperpa-
rameters.

NN-Assisted
MCMC

- Uses neural networks to accel-
erate or guide MCMC methods.
- Combines the expressive
power of neural networks with
MCMC.

- Can speed up the explorations
of MCMC methods.
- Leverages NN for improved
sampling efficiency.

- Inherits some limitations of
MCMC, such as slow mixing,
correlated samples, and mode
imbalance.

Score-based
Diffusion

- Learns score functions to iter-
atively perturb samples towards
the target distribution.

- Strong theoretical guarantees
for sampling specific distribu-
tions.

- Limited generalization to ar-
bitrary distributions, as score
functions are analytically de-
rived.
- Challenging in complex, high-
dimensional distributions

Annealing Flow (AF) requires pre-training, typically taking 10-20 minutes for tasks with dimensions < 10,
and around 30 minutes for tasks around dimension 50. For 50D experiments, training a single vk with a neural
network structure of 32-32-32 and 1000 gradient steps takes approximately 2–3 minutes. Once trained, AF
samplers are very efficient: generating 10,000 samples in just 1.5 seconds. These pre-trained samplers can be
reused at any time, offering significant speed advantages. In contrast, MCMC methods, such as Metropolis-
Hastings or Hamiltonian Monte Carlo, require about 1 minute to sample 10,000 points, and their performance
deteriorates in high-dimensional, multi-modal settings. Moreover, particle-based methods, like SVGD, struggle
significantly when generating more than 3,000 samples, requiring about 20 minutes for that many samples.
Therefore, we believe that users can take advantage of AF’s offline training, as it allows the samplers to be
trained once and then efficiently reused for sampling whenever needed.

D.2 IMPORTANCE FLOW

The importance flow discussed and experimented with in this paper requires a given form of π0(x), and
thus, a given form of q̃∗(x) = π0(x) · |h(x)| for estimating EX∼π0(x) [h(X)]. In our experimental set-
tings, q̃∗(x) = 1∥x∥≥cN(0, Id) can be regarded as the Least-Favorable-Distribution (LFD). We conducted a
parametric experiment for the case where q̃∗(x) has the given analytical form.

However, we believe future research may extend this approach to a distribution-free model. That is, given a
dataset without prior knowledge of its distribution, one could attempt to learn an importance flow for sam-
pling from its Least-Favorable Distribution (LFD) while minimizing the variance. For example, in the case of
sampling from the LFD and obtaining a low-variance IS estimator for Px∼π(x)(∥x∥ ≥ c), one may use the
following distribution-free loss for learning the flow:

min
θ

1

n

n∑
i=1

[
1{T (xi; θ) ≤ c} · ∥T (xi; θ)− c∥2

]
+ γ

∫ 1

0

∥v(x(t), t; θ)∥2, (21)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where the first term of the loss pushes the dataset {xi}ni=1 towards the Least-Favorable tail region, while the
second term ensures a smooth and cost-optimal transport map. Note that the above loss assumes no prior
knowledge of the dataset distribution π(x) or the target density q(x).

Xu et al. (2024b) has also explored this to some extent by designing a distributionally robust optimization
problem to learn a flow model that pushes samples toward the LFD Q∗, which is unknown and learned by the
model through a risk function R(Q∗, ϕ). Such framework has significant applications in adversarial attacks,
robust hypothesis testing, and differential privacy. Additionally, the recent paper by Ribera Borrell et al. (2024)
introduces a dynamic control loss for training a neural network to approximate the importance sampling control.
We believe that by designing an optimal control loss in line with the approaches of these two papers, one can
develop a distribution-free Importance Flow for sampling from the LFD of a dataset while minimizing the
variance of the adversarial loss, which can generate a greater impact on the fields of adversarial attacks and
differential privacy.

29

